The Effect of the Environment in the Synthesis of Robotic Controllers: A Case Study in Multi-Robot Obstacle Avoidance using Distributed Particle Swarm Optimization
نویسندگان
چکیده
The ability to move in complex environments is a fundamental requirement for robots to be a part of our daily lives. While in simple environments it is usually straightforward for human designers to foresee the different conditions a robot will be exposed to, for more complex environments the human design of high-performing controllers becomes a challenging task, especially when the on-board resources of the robots are limited. In this article, we use a distributed implementation of Particle Swarm Optimization to design robotic controllers that are able to navigate around obstacles of different shape and size. We analyze how the behavior and performance of the controllers differ based on the environment where learning takes place, showing that different arenas lead to different avoidance behaviors. We also test the best controllers in environments not encountered during learning, both in simulation and with real robots, and show that no single learning environment is able to generate a behavior general and robust enough to succeed in all testing environments.
منابع مشابه
An Exploration of Online Parallel Learning in Heterogeneous Multi-Robot Swarms
Designing effective behavioral controllers for mobile robots can be difficult and tedious; this process can be circumvented by using unsupervised learning techniques which allow robots to evolve their own controllers online in an automated fashion. In multi-robot systems, robots learning in parallel can share information to dramatically increase the evolutionary rate. However, manufacturing var...
متن کاملDistributed Multi-Robot Learning using Particle Swarm Optimization
This thesis studies the automatic design and optimization of high-performing robust controllers for mobile robots using exclusively on-board resources. Due to the often large parameter space and noisy performance metrics, this constitutes an expensive optimization problem. Population-based learning techniques have been proven to be effective in dealing with noise and are thus promising tools to...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013